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Abstract. We investigate performance characteristics for the LU fac-
torization of large matrices with various sparsity patterns. We consider
supernodal right-looking parallel factorization on a two dimensional grid
of processors, making use of static pivoting. We develop a performance
model and we validate it using the implementation in SuperLU_DIST,
the real matrices and the IBM Power3 machine at NERSC. We use this
model to obtain performance bounds on parallel computers, to perform
scalability analysis and to identify performance bottlenecks. We also dis-
cuss the role of load balance and data distribution in this approach.

1 Introduction

A valuable tool in designing a parallel algorithm is to analyze its performance
characteristics for various classes of applications and machine configurations.
Very often, good performance models reveal communication inefficiency and
memory access contention that limit the overall performance. Modeling these
aspects in detail can give insights into the performance bottlenecks and help
improve the algorithm. The goal of this paper is to analyze performance char-
acteristics and scalability for the LU factorization of large matrices with various
sparsity patterns.

For dense matrices, the factorization algorithms have been shown to exhibit
good scalability, where the efficiency can be approximately maintained as the
number of processors increases when the memory requirements per processor
are held constant [2]. For sparse matrices, however, the efficiency is much harder
to predict since the sparsity patterns vary with different applications. Several
results exist in the literature [1,4, 6], which were obtained for particular classes
of matrices arising from the discretization of a physical domain. They show
that factorization is not always scalable with respect to memory use. For sparse
matrices resulting from two-dimensional domains, the best parallel algorithm
lead to an increase of the memory at a rate of O(P log P) with increasing P [4]. It
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is worth mentioning that for matrices resulting from three-dimensional domains,
the best algorithm is scalable with respect to memory size.

In this work, we develop a performance model for a sparse factorization al-
gorithm that is suitable for analyzing performance with arbitrary input matrix.
We use a classical model to describe an ideal machine architecture in terms of
processor speed, network latency and bandwidth. Using this machine model and
several input characteristics (order of the matrix, number of nonzeros, etc), we
analyze a supernodal right-looking parallel factorization on two dimensional grids
of processors, making use of static pivoting. This analysis allows us to obtain per-
formance upper bounds on parallel computers, to perform scalability analysis, to
identify performance bottlenecks and to discuss the role of load balance and data
distribution. More importantly, our performance model reveals the relationship
between parallel runtime and matrix sparsity, where the sparsity is measured
with respect to the underlying hardware’s characteristics. Given any combina-
tion of application and architecture, we can obtain this sparsity measure. Then
our model can quantitatively predict not only the performance on this machine,
but also what hardware parameters to improve are most critical to improve the
performance for this type of applications. We validate our analytical model using
the actual factorization algorithm implemented in the SuperLU_DIST [5] solver,
the real-world matrices and the IBM Power3 machine at NERSC. We also show
that the runtime predicted by our model is more accurate than that predicted
by simply examining the workload on the critical path, because our model takes
into account both task dependency and communication overhead.

The rest of the paper is organized as follows: Section 2 introduces a per-
formance analysis model for the right-looking factorization, with its scalability
analysis. The experimental results validating the performance model are pre-
sented in Section 3 and Section 4 draws the conclusions.

2 Parallel right-looking sparse LU factorization on two
dimensional grids of processors

Consider factorizing a sparse unsymmetric n x n matrix A into the product of a
unit lower triangular matrix L and an upper triangular matrix U. We discuss a
parallel execution of this factorization on a two dimensional grid of processors.
The matrix is partitioned into N x N blocks of submatrices using unsymmetric
supernodes (columns of L with the same nonzero structure). These blocks of
submatrices are further distributed among a two dimensional grid P, x P, of P
processors (P. x P, < P) using a block cyclic distribution. With this distribution,
a block at position (I,J) of the matrix (0 < I,J < N) will be mapped on the
process at position (I mod P,,J mod P,) of the grid. U(K, J) (L(K,J)) denotes
a submatrix of U (L) at row block index K and column block index J.

The algorithm below describes a right-looking factorization and Figure 1
illustrates the respective execution on a rectangular grid of processors. This
algorithm loops over the N supernodes. In the K-th iteration, the first K — 1
block columns of L and block rows of U are already computed. At this iteration,
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Distributed matrix Grid of processors

Fig. 1. Tllustration of parallel right-looking factorization

first the column of processors owning block column K of L factors this block
column L(K : N, K); second, the row of processors owning block row K of U
performs the triangular solve to compute U(K,K + 1 : N); and third, all the
processors update the trailing matrix using L(K+1: N,K) and U(K, K+1: N).
This third step requires most of the work and also exhibits most of the parallelism
in the right-looking approach.
for K :=1 to N do
Factorize block column L(K : N, K)
Perform triangular solves: U(K, K +1: N) := L(K,K)™"' x A(K,K +1:N)
for J := K + 1 to N with U(K, J) # 0 do
for I := K +1 to N with L(I,K) # 0 do
Update trailing submatrix:
A(1,J) := A(1,J) — L(I,K) x U(K, J)
end for
end for
end for

The performance model we develop for the sparse LU factorization is close
to the performance model developed for the dense factorization algorithms in
ScaLAPACK [2]. Processors have local memory and are connected by a network
that provides each processor direct links with any of its 4 direct neighbors (mesh-
like).

To simplify analysis and to make the model easier to understand, we make
the following assumptions:

— We use one parameter to describe the processor flop rate, denoted +, and we
ignore communication collisions. We estimate the time for sending a message
of m items between two processors as a + mf, where a denotes the latency
and S the inverse of the bandwidth.

— We approximate the cost of a broadcast to p processors by log p [2]. Further-
more, the LU factorization uses a pipelined execution to overlap some of the
communication with computation, and in this case the cost of a broadcast
is estimated by 2 [2].
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— We assume that the computation of each supernode lies on the critical path
of execution, that is the length of the critical path is N. We also assume
that the load and the data is evenly distributed among processors. Later in
Section 3, we will provide the experimental data verifying these assumptions.

Runtime estimation. We use the following notations to estimate the runtime
to factorize an n x n matrix. We use ¢; to denote the number of off-diagonal
elements in each column of block column K of L, r; to denote the number
of off-diagonal elements in each row of block row K of U, nnz(L) to denote
the number of nonzeros in the off-diagonal blocks of L, nnz(U) to denote the
number of nonzeros in the off-diagonal blocks of U. M = 2 EZ:1 ¢y is the total
number of flops in the trailing matrix update, counting both multiplications and
additions. F' = nnz(L) + M is the total number of flops in the factorization.

With the above notations, the sequential runtime can be estimated as T, =
nnz(L)y + M~ = Fr.

We assume each processor in the column processors owning block column
K gets s - ¢t/ P, elements, where s - ¢, is the number of nonzeros in the block
column K and P, is the number of processors in the column. Block row K of
U is distributed in a similar manner.The parallel runtime using a square grid of
processors can be expressed as:

(2nnz(L) + +nnz(U)log P)
VP
The first term represents the parallelization of the computation. The second

term represents the number of broadcasting messages. The third term represents
the volume of communication overhead.

B

F 1
T(N,VP x VP) ~ 57+ @N + 5 Nlog P)a +

Scalability analysis. We now examine the scalability using a square grid of pro-
cessors of size P, where the efficiency of the right-looking algorithm is given by
the following formula:

_ Ts(N)

N VPXVP) = o NP < VD) M
N NPlogPa (2nnz(L)+nnz(U)log P)\/I_D B -
~[1+ ja ; + ja ; (2)

One interesting question is which of the three terms dominates efficiency
(depending on the size and the sparsity of the matrix). The preliminary remark
is that, for very dense problems (F' large), the first term significantly affects the
parallel efficiency.

For the other cases, we can compare the last two terms to determine which
one is dominant. That is, if we ignore the factors 2 and log P in the third term,
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we need to compare /P % with W Assuming that the network’s latency-
bandwidth product is given (%), we can determine if the ratio of the latency to
the flop rate (/7 term) or the ratio of the inverse of the bandwidth to the flop
rate (/v term) dominates efficiency. Overall, the following observations hold:

nnz(L4+U) )
N

Case 1 For sparser problems (\/1_3% > , the a/v term dominates

efficiency.
Case 2 For denser problems (\/1_3% < W), the /v term dominates effi-
ciency.

Case 3 For problems for which W is close to \/ﬁ%, the B/ term can
be dominant on smaller number of processors, and with increasing number
of processors the /7 term can become dominant.

Note that even for Case 2, the algorithm behaviour varies during the fac-
torization: at the beginning of the factorization, where the matrix is generally
sparser and the messages are shorter, a/y term dominates the efficiency, while
at the end of the factorization where the matrix becomes denser, /v term dom-
inates the efficiency.

Let us now consider matrices in Case 2. For these matrices, in order to main-
tain a constant efficiency, m must grow proportionally with v/P. On the
other hand, for a scalable algorithm in terms of memory requirements, the mem-
ory requirement nnz(L+U) should not grow faster than P. Thus, when we allow
nnz(L 4+ U) « P, the condition F' o« nnz(L + U)3/? must be satisfied, and the
efficiency can be approximately maintained constant. (In reality, even for these
matrices, /vy term as well as log P factor will still contribute to efficiency degra-
dation.) We note that the matrices with N unknowns arising from discretization
of Laplacian operator on three-dimensional finite element grids fall into this cate-
gory. Using nested dissection, the number of fill-ins in such matrix is on the order
of O(N*/3) while the amount of work is on the order of O(N?). Maintaining a
fixed efficiency requires that the number of processors P grows proportionally
with N*/3, the size of the factored matrix. In essence, the efficiency for these
problems can be approximately maintained if the memory requirement per pro-
cessor is constant. Note that a/v term grows with N 1/3 which also contributes
to efficiency loss.

3 Experimental results

In this section, we compare the analytical results against experimental results
obtained on a IBM Power3d machine at NERSC, with real-world matrices. The
test matrices and their characteristics are presented in Table 1. They are ordered
according to the last column, nnz(L 4+ U)/N, which we use as a measure of the
sparsity of the matrix.

The first goal of our experiments is to analyze the different assumptions we
have made during the development of the performance model. Consider again
the efficiency Equation (2) in Section 2. For the first term, we assume that the
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Matrix Order N| nnz(A)|nnz(L 4+ U)|Flops(F)|\nnz(L + U)/N

x10° x10° x10°
af23560 23560|10440| 484256 11.8 5.41 1.13
rmal0 46835| 6427|2374001 9.36 1.61 1.45
ecl32 51993|25827| 380415 414 60.45 1.60
bbmat 38744|11212(1771722 35.0 25.24 3.12
inv-extrl [30412| 6987|1793881 28.1 27.26 4.02
ex11 16614| 20331096948 11.5 5.60 5.65
fidapm1l |22294| 3873| 623554 26.5 26.80 6.84
mixingtank|29957| 4609|1995041 44.7 79.57 9.69

Table 1. Benchmark matrices.

load is evenly distributed among processors, while for the third term we assume
that the data is evenly distributed among processors. Note that we also assume
that the computation of each supernode lies on the critical path of execution.
Our experiments show that a two dimensional distribution of the data on a
two dimensional grid of processors leads to a balanced distribution of the data.
They also show that for almost all the matrices, the critical path assumption is
realistic [3].

However, the load balance assumption is not always valid. To assess load
balance, we consider the load F' to be the number of floating point operations to
factorize the matrix. We then compute the load lying on the critical path Fop by
adding at each iteration the load of the most loaded processor in this iteration.
More precisely, consider f,; being the load of processor p at iteration ¢ (number of
flops performed by this processor at iteration ¢). Then Fop = Zf;l maxle fpi-
The load balance factor is computed as LB = EC;—P. In other words, LB is
the load of heaviest processors lying on the critical path divided by the average
load per processor. The closer this factor approaches 1, the better is the load
balance. Contrary to the “usual” way, when the load balance factor is computed
as the average load divided by the maximum load among all the processors,
our computation of load balance is more precise. Note that we can also use
FCLP to compute a crude upper bound on the parallel speedup, which takes into
account the workload on the critical path but ignores communication cost and
task dependency. The results are presented in Table 2, in the rows denoted by
LB. We observe that the workload distribution is good for large matrices on a
small number of processors. But it can degrade quickly for some matrices such
as rmal0, for which load balance can degrade by a factor of 2 when increasing
the numbers of processors by a factor of 2. Consequently, efficiency will suffer a
significant degradation.
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| | P=1]p = 4]P = 16]P = 32|P = 64|P = 12]
af23560  |time| 9.95] 3.95] 2.36] 2.30] 3.17] 3.38
LB | 10| 128 205 292 421 667
rmal0 time| 3.41| 2.12| 1.90] 199 3.03] 3.7
LB| 10| 166 275 5.62] 913 16.07
ecl32 time[104.27| 20.34| 9.49] 7.25] 731 7.2
LB | 10| 1.09| 128 152 1.8 237
bbmat  |time| 67.37) 19.50] 7.61| 5.64] 6.05  6.50
LB | 10| 121 175 235 317 488
inv-extrl |time| 73.13] 19.08] 6.46] 4.72] 4.95] 5.29
LB | 10| 114 1.42| 1.87] 245 351
ex11 time| 9.49| 3.27| 1.54] 1.33] 1.65 207
LB| 10 127 1.90] 258 353 532
fidapmll |time| 51.99] 14.21| 4.84] 3.57] 3.47] 3.81
LB| 10| 115 1.46] 1.83 231 3.3
mixingtank|time|119.45] 33.87| 9.52| 6.47] 553]  5.27
LB | 10| 1.08 1.25| 143 163 204

Table 2. Runtimes (in seconds) and load distribution (LB) for right-looking factoriza-
tion on two dimensional grids of processors

The second goal of the experiments is to show how the experimental results
support our analytical performance model developed in Section 2. For this, we
use the analytical performance model to predict the speedup that each matrix
should attain with an increasing number of processors. Then we compare the
predicted speedup against the speedup obtained by SuperLU_DIST. The plots
in Figure 2 display these results, where the predicted speedup for each matrix M
is denoted by Mp, and the actually obtained (measured) speedup is denoted by
Mm. We also display in these plots the upper bound obtained from the workload
on the critical path, given by pr’ and we denote it as M LB.

As the plots show, the analytical performance model predicts well the per-
formance on a small number of processors (up to 30-40 processors), while the
predicted speedup starts to deviate above the measured speedup with an increase
in the number of processors. This is because on a smaller number of processors
our model assumptions are rather realistic, but on a larger number of processors
the assumptions are deviating from reality. That is why we see the degraded
scalability. More detailed data were reported in [3].

The upper bound based only on the workload on the critical path can be
loose, since it ignores communication and task dependency. However, it often
corroborates the general trend of the speedup predicted by our analytical model.
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For several matrices, such as bbmat, inv-extrl, fidapm11 and mixingtank, this
upper bound is very close to the prediction given by our analytical model (see
Figure 2), implying that for those matrices, load imbalance is a more severe
problem than communication, and improving load balance alone can greatly
improve the overall performance.

The third goal of the experiments is to study the actual efficiency case by
case for all the test matrices. One approach to do this is to observe how the
factorization runtime degrades as the number of processors increases for different
matrices. For this we report in Table 2 the runtime in seconds of SuperLU_DIST
factorization. These results illustrate that good speedups can be obtained on a
small number of processors and show how efficiency degrades on a larger number
of processors. As one would expect, the efficiency degrades faster for problems
of smaller size (number of flops smaller), and slower for larger problems.

We now examine how the actual model parameters (sparsity, «, 8 and 7)
affect the performance. On the IBM Power3, the measured latency is 8.0 mi-
croseconds and the bandwidth (1/8) for our medium size of messages is 494
MB/s [7]. The latency-bandwidth product is /8 = 4 x 103. Table 1 shows that
the algorithm’s efficiency for some matrices is clearly dominated by the a/~y
term, such as af23560, rmal0, ecl32 (Case 1 matrices). For the other matrices,
mixingtank, fidapm11, ex11, inv-extrl, the efficiency is significantly affected by
the 8/~ term (Case 2 matrices).

Matrices af23560 and ex11 have an approximately equal number of flops,
and almost similar runtimes on one processor. But efficiency degrades faster for
af23560 than for ex11. This is because the efficiency of af23560 is mostly affected
by the a/v term (Case 1), while the efficiency of ex11 is mainly affected by the
B/7 term (Case 2), and thus its performance degrades slower than for af23560.
For denser matrices which fall into Case 2, such as mixingtank, the algorithm
achieves much better efficiency even on large number of processors. Therefore,
the algorithm is more sensitive to latency than bandwidth.

4 Conclusions

We developed a performance model for a sparse right-looking LU factorization
algorithm and validated this model using the SuperLU_DIST solver, real-world
matrices and the IBM Power3 machine at NERSC.

Using this model, we first analyzed the efficiency of this algorithm with in-
creasing number of processors and problem size. We concluded that for matrices
satisfying a certain relation (namely F oc nnz(L + U)3/?) between their problem
size and their memory requirements, the algorithm is scalable with respect to
memory use. This relation is satisfied by matrices arising from the 3D model
problems. For these matrices the efficiency can be roughly maintained constant
when the number of processors increases and the memory requirement per pro-
cessor is constant. But for matrices arising from the 2D model problems, the al-
gorithm is not scalable with respect to memory use, the same as sparse Cholesky
factorization [4].
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Fig. 2. Speedups predicted by our performance model (labeled “p”) and by the load
balance constraint (labeled “LB”), versus the measured speedups (labeled “m”).
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Secondly, we analyzed the efficiency of this algorithm for fixed problem size
and increasing number of processors. We observed that good speedups can be
obtained on smaller number of processors. On larger number of processors, the
efficiency degrades faster for sparser problems which are more sensitive to the
latency of the network. A two dimensional distribution of the data on a two
dimensional grid of processors leads to a balanced distribution of the data. It also
leads to a balanced distribution of the load on smaller number of processors. But
the load balance is usually poor on larger number of processors. We believe that
load imbalance and insufficient amount of work (F') relative to communication
overhead are the main sources of worse efficiency on large number of processors.

One practical use of our theoretical efficiency bound is as follows. For certain
application domain, the matrices usually exhibit a similar sparsity pattern. We
can measure the sparsity with respect to the underlying machine parameters, i.e.,
floating-point speed, the network latency and bandwidth. Depending on whether
they belong to Case 1 or Case 2, we can determine the most critical hardware
parameters which need to be improved in order to enhance the performance for
this class of application. In addition, given several choices of machines, we can
predict which hardware combination is best for this application.
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